

Equilibrium Precipitate Model 1.1 Graphical User Interface

Matthew L. S. Zappulla (MS Student)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Standalone Program

• The package includes:

- The EQPrecip1.1 exe
- MATLAB Runtime Library
- Sample Input File
- Readme File

- Supporting Documentation
- Once the library is installed, the executable can run
- Allows for a smaller program operation
- No need for actual MATLAB license

It is important to use the correct version of the program (32bit or 64bit) based on your operating system

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Program Operation

- The program contains default settings with standard options
 - Personalized data or use the program default settings
 - Choice of phases
 - Austenite
 - Ferrite
 - Liquid
 - Temperature data
 - Initial and final temperature
 - Incrementation
 - Computer Check
 - Output of data
 - Excel
 - Text
 - Plot Control Options

ght Percent			- Temperature Information -			
Carbon	0.0472	[%]	Initial Temperature	1600		
Ntrogen	0.0083	[%]	Final Temperature	600		
Sulfur	0.0013	[%]	Temperature Increment	1		
Oxygen	0	[%]	🤨 Centigrade 🔘	Farenheit		
Titanium	0.0084	[%]	Check Initial Temp	erature		
Nobium	0.0123	[%]	Phase Custo	om data	_	
Vanadium	0.0027	[%]	Austenite	Solubility Products	1	
Aluminum	0.0223	[%]	C Liquid		1	
langanese	0.9737	[%]		nteraction Parameters		
lagnesium	0	[%]		Reset to Defaults		
Silicon	0.2006	[%]		Computer Control		
Boron	0	[%]				
Chromium	0.0354	[%]	Outpu	/t Options		
-		1		xt Output crosoft Excel File Outpu		
	core.					
File Handling				Pot Controls		
Load All	oy File					
-			Calculate	EXIT ALL W	NDOWS	

- User has option to enter specific temperature data
- User can also choose automatic computer control of the temperature choices

Interaction Parameters

 Element to 	Bements			
element	- Element List		Carbon	
interaction	Aluminum		Interaction Paramete	er of main element as affected by sub element
parameters	Boron		Nitrogen	-5790/T(i)
 Select desired 	Carbon		Carbon	8890/T()
olomont	Chromium		Sulfur	0.046
element			Oxygen	-0.34
– Adjust	Nerogen		Titanium	-55/T(j)-0.015
interaction	Oxygen		Niobium	1000/T(j)-0.437
narameters as	Manganese		Vanadium	0.0
desired		\Box	Aluminium	0.043
desired	Naghesium		Manganese	-5070/T(j)
	Vanadum		Magnesium	-0.07
	Silcon		Silicon	162/T(j)=0.008
			Boron	0.0
	Sulfur		Chromium	-21880/T(j)+7.02
Custom data Solubility Products Interaction Parameters Use Custom Data	Titanium Noblum			Losd

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Example Problem - Inputs

- 0.0472% Carbon
- 0.0083% Nitrogen
- 0.0013% Sulfur
- 0.0% Oxygen
- 0.0084% Titanium
- 0.0223% Aluminum
- 0.9737% Manganese
- 0.2006% Silicon
- 0.0% Boron
- 1600-600°C
 - By 1°C
- Default Behavior
- Output to Excel
- Output to CSV

Input Options – Input Files

- Reload old saved cases right back into the program
- Type up an alloy composition in a text editor
- Changes the output file default names automatically to track different cases

		Please Select the Alloy	File To Load nch 🔸 Equilibrium GUE + In Progress + Testing Area		• 4 Searc	h Testing Area	13	- 1
		Organize - New fo	sider .			- H	13	
File Has Los	ed Aloy File Celculade ExiT ALL WROCHYS	Proster Cartop Compose Compose Compose Compose Compose Cartop Compare Recert Places Computer Values Koures Computer Notures	Tane and Authliane	Date medified (77/201) 3-44.6M (66/2011) 10-34 AM	Type Test Document Test Document	5m 181 181		

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Magnesium 0.0

Silicon 0.2006 Boron 0.0

chromium 0.0354

- 1600-600°C
 - By 1°C
- Default Behavior
- Output to Excel
- Output to CSV

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Input Options – Save Input Files

- Save your cases in repeatable easy to read format
- Load right back into the program
- Text editor friendly

	Please Select the Aday File To Look. Select The Aday File To Look. Select The Aday File To Look. Select To Example The Aday File To Look.
File Handling Load Alloy File Save Alloy File Calculate EXIT ALL WIRCOMS	Organization New Holder Production Interl Organization Interl Intervent History Interl Organization Interl Intervent History Interl Organization Interl Intervent History Interl Intervent History Intervent Intervent Intervent
versity of Illinois at Urbana-Champaign • Metals Proc	essing Simulation Lab • Matthew L. S. Zappulla • 9
Choice of Plots	ns – Plot Controls
Choice of Plots Precipitates (by wt%) Dissolved Elements (by wt%) 	ns – Plot Controls
 Output Optio Choice of Plots Precipitates (by wt%) Dissolved Elements (by wt%) Nb-Ti-V Nitride Molar Fractions Al Ti Oxido Malar Fractions 	ons – Plot Controls
Choice of Plots Precipitates (by wt%) Dissolved Elements (by wt%) Nb-Ti-V Nitride Molar Fractions Al-Ti Oxide Molar Fractions Mn-Mg Oxide Molar Fractions Mn-Mg Sulfide Molar Fractions Choice of Plot Output Type Linear (default)	Precipitates Pr

Inuous asting

Temperature Check

- Before Executing, The program will verify that the supplied temperature range will capture all precipitate formation
- If the supplied range is not • sufficient, the program alerts the user to the precipitation temperature and executes with the proper temperature range

Example Problem – Output Plots

Temperature (C) University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Output Options – Output Files

- Choice of Output File Types
 - Excel as a .xls
 - Text as a .txt
- Filename based off of input filename (if used)

		OO - L + Research +	Equilibrium GUL + In Progress + T	sting Area	• 49 Sea	rch Testing Are	<i>a</i> .	
		Organize • New folder					曲•	4
Output Options Microsoft Excel (TM) File Output CSV Output Plot Controls	Save File As.	Poetras Videos Poetras Poetras Poetras		No items metch your se	arch.			

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Ex Problem Output - .xls

- The Output to excel option generates a detailed spreadsheet
 - Each precipitate is given in a column in relation to the temperature column to the left
 - If a precipitate is not present it does not appear, this makes reading the spreadsheet much easier

4	8	c	D	E	F G	н	1	J	
	Temperature	Dissolved Nitrogen	Dissolved Carbon	Dissolved Sulfur	Titanium Nitride	Titanium Carbide	Noibium Nitride	Niobium Carbide	ſ
	1600	0.0083	0.0472	0.0013	0	0	0	0	1
	1599	0.0083	0.0472	0.0013	0	0	0	0	
	1598	0.0083	0.0472	0.0013	0	0	0	0	
	1597	0.0083	0.0472	0.0013	0	0	0	0	
	1596	0.0083	0.0472	0.0013	0	0	0	0	
	1595	0.0083	0.0472	0.0013	0	0	0	0	
	1594	0.0083	0.0472	0.0013	0	0	0	0	
	1593	0.0083	0.0472	0.0013	0	0	0	0	
	1592	0.0083	0.0472	0.0013	0	0	0	0	
	1591	0.0083	0.0472	0.0013	0	0	0	0	
	1590	0.0083	0.0472	0.0013	0	0	0	0	
	1589	0.0083	0.0472	0.0013	0	0	0	0	
	1588	0.0083	0.0472	0.0013	0	0	0	0	
	1587	0.0083	0.0472	0.0013	c	0	0		
	1586	0.0083	0.0472	0.0013	0	0	0	0	
	1585	0.0083	0.0472	0.0013	0	0	0	0	
	1584	0.0083	0.0472	0.0013	0	0	0	0	
	1583	0.0083	0.0472	0.0013	0	0	0	0	
	1582	0.0083	0.0472	0.0013	0	0	0	0	
	1581	0.0083	0.0472	0.0013	0	0	0	0	
	1580	0.0083	0.0472	0.0013	0	0	0	0	
	1579	0.0083	0.0472	0.0013	0	0	0	0	
	1578	0.0083	0.0472	0.0013	0	0	0	0	
	1577	0.0083	0.0472	0.0013	0	0	0	0	
	1576	0.0083	0.0472	0.0013	0	0	0	0	
	1575	0.0083	0.0472	0.0013	0	0	0	0	
	1574	0.0083	0.0472	0.0013	0	0	0	0	
	1573	0.0083	0.0472	0.0013	0	0	0	0	
	1572	0.0083	0.0472	0.0013	0	0	0	0	

Ex Problem Output - .txt

- The Output to text option generates a detailed space delimited txt file
- Each precipitate is given in a column in relation to the temperature column to the left

Samp	eleloputOut to	t - Notepad													×
File Er	sit Format	View Hel	p.												
Te	mperature	1	Nitrogen	1	Carbo	n	Sul	fur	OXVO	ien Tita	nium Nitr	ide	Niobi	um Ni	C
1599	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	116
1598	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	- E
1597	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	- 6.88
1596	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1595	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1594	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1593	0,0083	0.0472	0.0013	0	0	0	0	0	ō	Ö	0	Ö	ō	0	
1592	0.0083	0,0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1591	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1590	0.0083	0.0472	0.0013	ō	ō	ō	õ	õ	õ	õ	õ	õ	ö	õ	
1589	0.0083	0.0472	0.0013	Ö	õ	0	Ö	ö	ŏ	õ	ŏ	ö	ŏ	ö	
1588	0.0083	0.0472	0.0013	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	
1587	0.0083	0.0472	0.0013	0	õ	0	õ	0	õ	õ	õ	õ	õ	0	
1586	0.0083	0.0472	0.0013	ő	õ	0	õ	õ	õ	õ	õ	õ	ő	Ő.	
1585	0.0083	0.0472	0.0013	ŏ	õ	õ	ő	ő	ŏ	ő	õ	õ	ŏ	ŏ	
1584	0.0083	0.0472	0.0013	õ	õ	ő	ŏ	ő	ŏ	õ	ő	õ	ŏ	ő	
1583	0.0083	0.0472	0.0013	õ	ő	ő	ő	ő	ŏ	õ	ő	ő	ő	ő	
1582	0.0083	0.0472	0.0013	ő	ŏ	ő	ő	ő	ŏ	ő	ő	ő	ŏ	ő	
1591	0.0083	0.0472	0.0013	ő	ŏ	ő	ő	ő	ě	ő	0	ő	ŏ	ő	
1580	0.0083	0.0472	0.0013	ő	0	ő	ő	0	ě	0	0	ő	ő	0	
1570	0.0083	0.0472	0.0013	× ×	0			0	×.			~	~	ő	
1570	0.0083	0.0472	0.0013	0	0	0		0	8	0	0	0		0	
1577	0.0083	0.0472	0.0013	0	0	0		0	8	0	0	0	0		
1576	0.0083	0.0472	0.0013	× ×		0	ě.	0	~	0	0	0	ő		
13/0	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	8		
12/2	0.0083	0.0472	0.0013	0	0	0		0	8	0	0	0		0	
13/4	0.0083	0.0472	0.0013	0	0	0		0	0	0	0	0			
13/3	0.0083	0.0472	0.0013		0			0			0	0	ě		
13/2	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
13/1	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1570	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1509	0.0083	0.04/2	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1208	0.0083	0.04/2	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1567	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1200	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1565	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1564	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1503	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1562	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1561	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1560	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1559	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1558	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1557	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1556	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1555	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1554	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1553	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
1552	0.0083	0.0472	0.0013	0	0	0	0	0	0	0	0	0	0	0	
															10

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Matthew L. S. Zappulla • (#)

Acknowledgments

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- Kun Xu, PhD.
- Aravind Murali
- Prof. Brian Thomas